15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites.

نویسندگان

  • Ronald L Koder
  • Joseph D Walsh
  • Maxim S Pometun
  • P Leslie Dutton
  • Richard J Wittebort
  • Anne-Frances Miller
چکیده

Flavins are central to the reactivity of a wide variety of enzymes and electron transport proteins. There is great interest in understanding the basis for the different reactivities displayed by flavins in different protein contexts. We propose solid-state nuclear magnetic resonance (SS-NMR) as a tool for directly observing reactive positions of the flavin ring and thereby obtaining information on their frontier orbitals. We now report the SS-NMR signals of the redox-active nitrogens N1 and N5, as well as that of N3. The chemical shift tensor of N5 is over 720 ppm wide, in accordance with the predictions of theory and our calculations. The signal of N3 can be distinguished on the basis of coupling to 1H absent for N1 and N5, as well as the shift tensor span of only 170 ppm, consistent with N3's lower aromaticity and lack of a nonbonding lone pair. The isotropic shifts and spans of N5 and N1 reflect two opposite extremes of the chemical shift range for "pyridine-type" N's, consistent with their electrophilic and nucleophilic chemical reactivities, respectively. Upon flavin reduction, N5's chemical shift tensor contracts dramatically to a span of less than 110 ppm, and the isotropic chemical shift changes by approximately 300 ppm. Both are consistent with loss of N5's nonbonding lone pair and decreased aromaticity, and illustrate the responsiveness of the 15N chemical shift principal values to electronic structure. Thus. 15N chemical shift principal values promise to be valuable tools for understanding electronic differences that underlie variations in flavin reactivity, as well as the reactivities of other heterocyclic cofactors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr...

متن کامل

Characterization of reactive sites in supported catalysts by 51V/15N rotational echo double resonance NMR spectroscopy: formation of phenylimido groups at surface-bound oxovanadium sites.

Silica-supported oxovanadium groups were reacted in a gas-solid reaction with aniline at 175 degrees C. The reaction was clean as monitored in situ by UV-vis spectroscopy and resulted in the elimination of water as the principal product of the reaction and the disappearance of the terminal V=O stretch in the Raman spectrum. 15N MAS solid-state NMR spectroscopy showed only a single nitrogen-cont...

متن کامل

(15)N-(1)H bond length determination in natural abundance by inverse detection in fast-MAS solid-state NMR spectroscopy.

A solid-state 15N-1H correlation NMR experiment is presented, which provides a substantial gain in signal sensitivity by 1H inverse detection under fast MAS conditions and allows for the precise determination of NH bond lengths via heteronuclear 1H-15N dipole-dipole couplings on samples naturally abundant in 15N. Pulsed-field gradients or, alternatively, radio frequency pulses ensure suppressio...

متن کامل

1H, 15N and 13C backbone resonance assignments of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2

Pentaerythritol tetranitrate reductase (PETNR) is a flavoenzyme possessing a broad substrate specificity and is a member of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using stopped-flow methods have shown that ...

متن کامل

Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysis.

The conformation of an elastin-mimetic recombinant protein, [(VPGVG)4(VPGKG)]39, is investigated using solid-state NMR spectroscopy. The protein is extensively labeled with 13C and 15N, and two-dimensional 13C-13C and 15N-13C correlation experiments were carried out to resolve and assign the isotropic chemical shifts of the various sites. The Pro 15N, 13Calpha, and 13Cbeta isotropic shifts, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 47  شماره 

صفحات  -

تاریخ انتشار 2006